This week's Sunday Long Read is from Aeon Magazine, as environmental scientist Dr. Rebecca Altman journeys with her grandfather to the site of his first major job: the Bakelite plastic plant in New Jersey, where America's plastic revolution began.
In 1962, the same year Rachel Carson published Silent Spring, my father started his first job at this factory. He was 22, his black hair buzzed short, accentuating the characteristic patch of white just above his hairline. He had just graduated from the chemical engineering programme at the University of Rhode Island, and was hired even though URI did not yet offer classes in plastics production.
Union Carbide assigned him as a process engineer. Within four years, at the age of 26, the company promoted him to supervisor of their polystyrene department, a position he held for a couple years until taking over the production of phenol, formaldehyde and hexamethylenetetramine, the chemicals used to make Bakelite. They gave him a good salary and a small office with a door. When closed, it could dampen the din of the incessant machines. But he spent most days in the plant. His shirt and tie carried home the saccharine smell of styrene and Acrowax, the powder sifted onto the finished polystyrene pellets to keep them from sticking. For a time, he commuted by bicycle past the junkyards before pedalling down Baekeland Avenue. When the union went on strike, he worked the 12-hour graveyard shift. By the close of 1963, The New York Times Magazine reported, Union Carbide had made 1 billion lbs of plastic in a single year.
My father spent a decade at that job, spanning the period in which my three older siblings were born. By spring 2013, on the day we visited, only a few buildings remained. We happened to meet a uniformed employee who showed us a manhole cover bearing the Bakelite logo, the only known company artifact on-site. He had salvaged it and placed it by the central flagpole, in grass taken over by Canadian geese. It once marked a portal into the dense network of underground wires and pipes that, like roots, conveyed power and resources to the plant’s many branches. I stood between my father and the geese trying to imbue the round, rusted disc with significance. But all I could see were goose droppings.
Visiting the old Carbide site made me wonder why we call industrial factories ‘plants’ in the first place. Most plants strike me as an extreme landscape, invasive, grown beyond the human scale. They look like an impenetrable thicket of pipes and valves, canopies of stacks and distillation columns with an understory of brick and catwalks, scaffolding and tanks.
But little else can thrive in their presence. I’m reminded of the Locke Breaux Oak that, since the 1600s, had grown in Taft, Louisiana. Union Carbide built a chemical plant nearby and, beginning in 1966, it likely made the styrene my father coaxed into polystyrene. When the plant was built, the oak was 36 ft around its trunk and 75 ft tall, with branches that spanned 170 ft across. But by 1968, it was dead. So I’m left wondering: how is it that two seemingly opposed concepts – factories and flora – came to share the same word?
The related term, factories, is a shortening of manufactories, an example of how places are sometimes named according to what actions – manufacturing – are performed there. Hence smelters smelt. Paper mills mill paper. Ironworks work iron. Refineries refine petroleum. But plants don’t follow the same logic. The corollary would be plantations.
Interestingly, Union Carbide’s Taft plant sits along the 150-mile corridor between Baton Rouge and New Orleans, which was once lined with antebellum plantations. The hundred or so petrochemical plants along the Mississippi were constructed on former cotton, indigo and sugar plantations, and now produce, in addition to chemical feedstocks and plastics, synthetic versions of the crops once raised by forced labour: rayon, dyes and artificial sweeteners. The descendants of former slaves now share a fence line with some of the most polluting industries in the nation.
However, according to the Oxford English Dictionary, calling factories plants predates the conversion of US plantations into petrochemical production. I put the question to an environmental historian, several sociologists, a linguist, two science and technology scholars, and a plastics expert – all of whom uncovered pieces of its origins, but were otherwise stumped by how factories became plants. Might it have a Latin root? Does it refer to how the first factories converted plants (such as cotton) into commodities? Was it a clever metaphor – to plant a business, to sow profit – that spread organically? Did its use emerge in that chasm between technological change and the evolution of adequate terminology to describe it?
Even the linguist said I’d dug up an etymological mystery, one that hadn’t yet revealed its source. And while my (re)search continues, I wonder how phrases become taken for granted, adopted without thought, and their origin largely unknown to generations who rarely question the way things have come to be.
The same could be said about plastics.
As the world heads forward into new technology, plastics are still with us after a century and will still be with us centuries later. That's both the promise of the technology, and the curse. We still need plastics today, and that means we need the oil that plastics come from. New plastics are being invented from biological sources, but petrochemical-based plastics are ubiquitous today and will continue to be for some time. We talk about replacing oil as a source of energy all the time.
What we don't talk about is replacing oil as a source of plastics. We need to have this conversation on a far more regular basis.
No comments:
Post a Comment