"While we achieved great results when oxidized ATP was injected directly into the spinal cord, this method would not be practical for use with spinal cord-injured patients," said lead researcher Maiken Nedergaard, professor of Neurosurgery and director of the Center for Translational Neuromedicine at the University of Rochester Medical Center.Hopefully this will work out without the "smurf" effect there (side effects of the rats tested were, well, parts of them turning blue temporarily) but it goes to show you that food chemistry is A) very complex and B) very cool."First, no one wants to put a needle into a spinal cord that has just been severely injured, so we knew we needed to find another way to quickly deliver an agent that would stop ATP from killing healthy motor neurons. Second, the compound we initially used, oxidized ATP, cannot be injected into the bloodstream because of its dangerous side effects."
Back in 2004, Nedergaard's team discovered that the spinal cord was rich in a molecule called P2X7, which is also known as "the death receptor" for its ability to allow ATP to latch onto motor neurons and send the signals which eventually kill them.
Nedergaard knew that BBG could thwart the function of P2X7, and its similarity to a blue food dye approved by the Food and Drug Administration (FDA) in 1982 gave her the confidence to test it intravenously.
It worked. The rats given BBG immediately after their injury could walk again with a limp. Those that didn't receive a dose never regained their mobility.
Not everything I post about health care is a complaint about the current system, I guess. The medical research end of the system does work, especially using a food dye to prevent spinal cord damage.
EPIC WIN, there.
No comments:
Post a Comment